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An investigation of the accuracy of the Kfrchhoff-Love theory for statics 
of arbitrary shells was initiated in [l, 21, in which 8 state of stress 
was introduced with an exponent p (see Formula (1.8)) not in excess of a 

limit p<(a -If2 (a is the relative thickness). This work gave rise to 
the idea of using the Kirchhoff-Love hypothesis to determine the state of 
stress of a shell with an asymptotic error of the order of a as a - 0. 
This confirmation appears to be correct for many problems. Nevertheless, 
this does not mean that all versions of the Kirchhoff-Love theory are 
equivalent and are firmly grounded in the asymptotic sense for all prob- 
lems. 

It is of interest to note that problems exist in the calculation of 
circular cylindrical shells for which the simplified versions of the 
Kirchhoff-Love theory lead to asymptotic errors of the order of D or 
*l/2 , and that certain more complicated versions lead to errors even in 
the principal terms. It is not difficult to show this for such problems 
if the solutions obtained from different versions of Kirchhoff-Love 
theory are compared with analytical solutions obtained from the three- 
dimensional theory of elasticity [3, p. 361. 

It is shown that for solutions obtained using the Novozhilov theory 
[4,5], the coefficients of all static terms with an a* multiplier are 
correct, but that for certain other versions in the theory of cylindrical 
circular shells [6,101 the coefficients of mixed derivatives of the 
fourth and sixth order are incorrect. Lt is not difficult to find prob- 
lems in which these terms play an essential role. 

One such problem has been considered by Darevskii 161. BY retaining 
the Kirchhoff-Love hypothesis as being sufficiently accurate, he con- 
structed a comparatively complex version of the theory for the solution 
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of problems of the above mentioned type. Upon considering a concrete ex- 
ample, Darevskii was led to the conclusion that his theory and that of 

Novozhilov gave different formulas for the principal displacement terms. 

In connection with this, Darevskii [6, p.5351 came out with the opinion 

that the elasticity relations in the Novozhilov theory were too over- 

simplified for the solution of the problem under consideration. It will 

be shown here that the correct solution in the asymptotic sense will be 

obtained on the basis of the Novozhilov theory. 

The example mentioned shows clearly that problems exist for which a 

stricter observance of the Kirchhoff-Love hypothesis not only does not 

lead to more exact solutions, but rather does the opposite. Therefore, it 

is desirable to formulate a trustworthy foundation on the basis of esti- 

mates of accuracy for different versions of the Kirchhoff-Love theory. 

A linear theory for the statics and dynamics of circular cylindrical 

shells is presented in the paper, constructed as an asymptotic approxima- 

tion to the three-dimensional theory of elasticity as o - 0. It is used 

to determine a state of stress which varies sufficiently slowly (e’p*<< 1) 

with an asymptotic error of the order of IbO Q a2p2 + a2. Fe shall call 

this theory for short the asymptotic theory. 

The suggested asymptotic theory represents a further development of 

results obtained by the author [3] on the basis of power series, applied 

by Kil’chevskii [ll] in a modern form to construct a two-dimensional 

shell theory, also by Novozhilov and Finkel’ shtein [I), and independently 

applied by Epstein and Kennard [12-161 to construct a dynamic theory for 

circular cylindrical shells. An asymptotic estimate of errors was intro- 

duced in [31, an exact theory for circular cylindrical shells was con- 

structed, and the solutions were investigated. 

In contrast to the above work, all unknown quantities are expressed 

here in terms of a single solution function. This makes the final results 

more comprehensible and more convenient for application. It is important 

to emphasize that the asymptotic theory does not depend on any specific 

properties of the power series method. It permits analysis of various 

hypotheses and estimates of accuracy for different versions of the 

Kirchhoff-Love theory. It is shown that the individual hypotheses of the 

Kirchhoff-Love theory are not basic in the asymptotic sense. Neverthe- 

less, they found application in the Novozhilov theory, they lead to 

correct final formulas for shear forces and for various other quantities. 

>!utual compensation of errors is an important positive property of the 

Novozhilov theory and guarantees correct coefficients in the solutions. 

Refinement of the relations of elasticity (in the limit the Kirchhoff- 

Love theory) may damage the effect of mutual compensation of error and 

lead to more complex but no less exact theory than that, for example. 
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in [61 . 

At the end of the paper there is provided the result of an analysis 
of the accuracy of the Novozhilov theory in the static analysis of 
circular cylindrical shells by trisonometric series. 

A class of problems is demonstrated for which the asymptotic error in 
the Novozhilov theory does not exceed a or a’12. The problem of Darevskii 
[61 belongs to this class. 

1. Basic notation and initial assumptions. We introduce the 
following notation: E, modulus of elasticity; B, Poisson’s ratio; p, 
density of the material; R,, radius of the middle surface of the shelf; 
6, shell thickness; 6, 9, 5, nondimensional coordinates corresponding to 
the length, transverse arc, and radius of the shell; t, the time; T, a 
nondimensional time; u. (j = 1, 2, 31, displacements in the <, (p, 5 
directions, respective y; i Ujk (j, k = 1, 2, 3), stresses. lhe relations 
are: 

and 

1 
Y’“1_cL’ b=&, a2+Z, 0 L-S-1 

Ihe nondimensional displacements uj* and stresses cjk* are determined 
from the formulas 

UJ = SjHoUj* b-1 = s,=1, spi=‘I/-1) (f.1) 
Ojk = E (1 - /.k’)-l SjkUjk" (1.2) 

(s. jk = 1 for jk = 11, 22, 33, 13; sjl( = i for jk = 12, 23) 

and the nondimensional forces, moments and transverse forces from the 
formulas 

Tjk* = Njk’, iV.fjk* = Njk’, Qj* = NjsO (i,k=f,2) (1.3) 
b 

(i = 1,2; k = 1,2,3; n = %I; cLl=C, a2 = 1) (1.4) 

We introduce the notation 

(i=1,2,3; n=O,l,...) (1.5) 

for “integrated displacements”. 



1396 U.K. Nigul 

We shall consider a shell either unloaded or with a normal load of 
the form 

&&-’ (1 f b) oXi* (E, 9, f b; z) = f $4. (1.6) 

The relation 

q* = R&w-’ (1 - l.9) q 

may be substituted for a large class of applications, where q denotes the 
normal load on the middle surface. (The cases of pure tension and pure 
torsion are excluded as they have been studied in detail [51.) 

The condition is adopted that all states of stress having a suffi- 
ciently small index of variation must be constructed with the aid of a 
single function @. It was assumed in [31 that (D has the form 

The coefficients 

1 > 6, = a2g2, 

4 = exp (h% - imcp - iS2r) 

A, RI, Q, must satisfy the condition 

g2 = P2 4 Cl, pa = 1 c2Q2 + c,h2 + cpm2 1 

Cj = COIlSt- 1 

(1 J) 

(1.8) 

Condition (1.8) may be considered as defining the concept of “suffi- 
ciently small index of variation of a state of stress”. It is a basic 
assumption in all expositions of this paper. 

If the equalities 

are recognized as symbolic ways of describing the derivatives, then the 

Formulas of [31 and of this paper, apply also for a nonexponential func- 

tion 0, which are differentiable a sufficient number of times and because 

$-CD=-iQ@ (1.9) 

of this, they do not increase faster than (1.7). Such functions Q, are 
often encountered in constructing particular solutions corresponding to 
surface loads. 

2. Solution equation and be basic formulas of the asymp- 
totic theory. ‘lhe function 0 is determined with. an asymptotic error 
6, from the equations [3, p. 431 

[A + a2 (d, + d,) I @ = 4* (2.1) 

where 
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do=-Q~-$(3-p)Q~(h2-m2)+Q4- (2.2) 

-~(1-~)B2[(hs-?722)s-(3+2~)h2+1~23+$(1-~)(1+)~4 

d, = $ (1 -CL) [(ha - m2)4 - 2m6 + m4], (I, = 2 (1 -j.k) h2m2(2m2 - 1) 

The homogeneous equation ( 2.1) exhibits the following property. If one 
pair of the three quantities R, h and m is given such that their absolute 
magnitudes are essentially less than a-‘, then we obtain a characteristic 
equation whose roots are also essentially less than a -I and, consequently, 
0, satisfies the condition (1.8). 

Equation (2.1) includes derivatives with respect to 5 and 9 up to the 
eighth order, and with respect to T up to the sixth order. This is re- 
lated to the fact that there are only three forms of expansion waves 
satisfying condition (1.8). 

For the middle surface displacements (c, = 0) we get from this system 
of Equations [3, p.291 

%J = Vjo + U2Vjl + . . . (i = I,% 3) (2.3) 

where 

L‘ 10 = - h[pQ2 -i-+-p (1 -p) h2 ++(I -IL) m2]@ 

r,o=m[Q2-t+(2+~)(1-~)h2-+(l-p.)m2]@ (2.4) 

V 30 = [Q4 ++(3 -p) Q2 (A2 - m2) + $(I -p) (h2- m2)2]Q, 

V 11 = --a Q2g2-f(1-~2)~‘-+~(3-~)~2m2+$(5-~)m4+ 
L1 

+~~(3-~)h2+$(l -2p)m2]@ (2.5) 

2’21 = m Q2g2 
i 

- $(5--2p - p2)h4 + $ (13 - 7~ - 2~~) h2m2 - 

- $ (1 - p) m4 + $ (2 + 3y + 4p2) h2 - f m2] CD 

V 31 = 
C 

02 (p” $ p”) - $ (h2 - m2)3 + f (2 - 2p + p”) h4 - 

- $ (6 - 10~ + 5p2) h2m2 + $ (1 - p) m4 CD 
I 

On the basis of (2.3) it follows by means of power series [3,pp.&-491 
that the field of displacements and strain components sk,*(k, r = 1, 2) 
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is determined with an asymptotic error 6, by formulas 

% * = Vj0 + 5*$j9 tQr* = %r “‘f 6.&kr (i = 1, 2,3; k, r = 1, 2) 

(2.6) 

where v’jl ERR and Kk, denote, respectively, the angle of rotation, 
strain components in the middle surface, and the changes in curvature. 
For these quantities we have the expressions 

$1 = - ho, ‘$2 = vzo + mvao, $3 = - PV @II” + ssz’) (2.7) 

” 
%I = %l 1 812 = 821 = ~12" + -$ (I + p) hma2G 

tsa9 = eazv+ $pm2a2G (2.8) 

x11 = %I", x12 = x12", 
" 

x21 = x12y - 61, , x22 =%2aV +%- e22" (2.9) 

Here 

Y 

El1 = hVl$j, El2 v = - mulo + av20, 822 ” = mu,, -j- us0 

G = m2(m2 - I)@, Xl1 v = h$,, 
x12 

* = j&q,, 
x22 

" =L: mq2 (2**@ 

Calculation of the integrals (1.4) and (1.5) by power series [3, pp. 
46-561 and the application of Formulas (2.3) to (2.10) gives the follow- 
ing expressions for the forces, moments, integrated displacements and 
transverse forces, with an asymptotic error eO: 

Tll* = cllv -+- pt322” - +p (1 -p) m2a2G 

I’,,” = !%I~ + E22" + (1 - p) (2A2 - -$m2)a2C 

7’1,” = A. 2( 1 - p) (t 12v + 3Lma2G) 

(2.11) 

1'2,* = f$(i -p) (~12" -I- @mdG) 

ujO = VjO, ujl = aa (vjO -t +j) (i = f,2,3) (2.12) 
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Q; = hMll* + mM,,* + Q2U,, 

Q2* = hM12* - mM2,* -j- Q2U21 (2.13) 

It can be shown that in problems of statics it is expedient to change 
the form of MI1* and Mz2* in Expressions (2.11) into the following: 

Mll* = a2 h” + w22* + %I” + I%%“) 

,u,,* = a2 (pQ*” + x22* - p&II” - ez2”) I (2.14) 

on the basis of (2.1). 

Formulas (2.6) to (3.14) express the unknown quantities in term of 

the solution function CD,; for the sake of brevity they are not written in 

their expanded form. 

For calculation of the coefficients of a2C: in all expressions, the 

tangential forces ‘jk* (j, k = 1, 2) h s ow zero terms in the power series 
[3] with multipliers <,2 

terms in the stress aS3. 

and in parts of Tji* (j = 1, 2) except for 

‘lberefore, Expressions (2.6), although suffi- 
ciently accurate for determining Ed,*, do not allow of vindicating Ex- 

pressions (2.11) in Tjk*. 

‘lhe role of the normal ua3* stresses in the calculation of Tjj* and 

Mjj* may be judged from the following example. 

Integration of the relations in the three-dimensional theory of 

elasticity gives the following: 

l’jj* = Ii f Ji, Mjj* = I,; + Jj', (i=1,2) (2.15) 

where 

Then on the basis of [3] we have with accuracy up to terms with an 
a* multiplier 
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(2.17) 

*arisen of Expressions (2.11) and (2.15) shows clearly that such a 
slowly varying state of stress must exist for which the hypothesis 

033 
* = 0 is unacceptable in the special form taken. 

It is not difficult to show that Expressions (2.11) to (2.13) satisfy 
the integrated (two-dimansional) equations of equilibrium of the shell 
within the limits of asymptotic error 6,. ‘lhe first and second equations 
are satisfied identically, the third reduces to Equation (2.11, and the 
fourth and fifth to Formulas (2.13). 

Finally, the exposition of asymptotic theory admits of further 
simplification for the construction of concrete elementary states of 
stress. Nevertheless, in this paper, only the difference between asymp- 
totic theory and Kirchhoff-Love theory is taken up, since the problem of 
further simplification is considered in many papers [4,5,7,201. 

3. On the asymptotic emor in the ~ire~off~~ve ttteery. 

Not a single verison of the Kirchhoff-Love theory coincides completely 
with the asymptotic theory. 

Nevertheless, each version is equivalent to the asymptotic theory in 
those problems for which, to an erroreo, expressions may be discarded 
which distinguish them from the asymptotic theory. 

All consistent versions of the Kirchhoff-Love theory are equivalent 
to the asymptotic theory for a large class of problems for which it is 
possible, to an error 6,, to omit the expression for d2 in Equation 
(2.1); the expression for a2C in Formulas (2.8) and (2.111; and the 
strain components ajkV in Formulas (2.14). 

‘Ihe application of the version of Kirchhoff-Love theory used by 
Novozhilov [41 justified itself in the asymptotic sense not only for the 
problem worked but also for many others. 

The Novozhilov theory [4,51 coincides up to an error 6, with the 
asymptotic theory in parts of the basic equation [3,201 and in parts of 
the formulas for the quantities vi’s (j = 1, 2, 3), yh (k = 1, 2), alI, 

“11) K121 K22’ T jk* Ci, k = 1, 21, M$ (in problems of statics using 
the simplified basic equation [S, p.2301 the Novozhilov theory coincides 
completely with Fguation 2.1)); his theory differs in the formulas for 

‘jl (i 

it does 
= 1, 2, 31, Ebb, Ebb, KZlr IVES*, "'jj*, Qj* fj = 1, 21, and besides, 
not determine yS. 
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We note that ~~~ does 
Nevertheless the formula 

not coincide with the quantity o in [4,5]. 

1401 

e,, = (1 - f-v CL* + T,l*) 

follows from (2.8) and (2.11) and permits correct determination of the 

value of El2 in terms of T12*, T, 1* in the Novozhilov theory. 

Other versions of the Kirchhoff-Love theory c6-81 differ from the 
asymptotic theory more acutely in regard to coefficients in the expression 
for d, in Equation (2.1) and in front of c2C in Formulas (2.11) for Tjk** 
‘Ibe success of the Novozhilov theory arises from mutual compensation of 
errors in the geometry and in simplified elasticity relations. l’herefore 
it is not difficult to demonstrate problems for which the No:vozhilov 
theory is well grounded in the asymptotic sense, and for which other 
versions of the Kirchhoff-Love theory lead to asymptotic errors of the 
order of a”. The author has no knowledge of cases to the contrary. 

Analysis of the accuracy of the Novozhilov theory for syrnnetrical 
problems (relative to the circle < = Of of statics (n = O), for which 

a2ma < 1 (m = 2,3, . . .) (3.4) 

Q* = r fE) e-‘m, lrl;a $ 
I I 

(n=1,2,...,00) (3.2) 

and in whrch aI2 did not enter into the conditions given on the bound- 
aries $ = * co -., f , gave the following results. 

1. If T12* does not enter the boundary conditions, then the displace- 
ments and farces of the basic state of stress are determined with an 
asymptotic error a. 

2. If T12* and MI1* or T12* and Q1* enter the boundary conditions, 
then initial data must be at hand by which the displacements and forces 
in the basic state of stress are determined to an asymptotic error of 
cl/2 

3. Boundary effects for any unknown quantity and the basic state of 
stress for moments and transverse forces may be shown to be determinable 
with asymptotic error greater than cl” only in the case where correspond- 

ing displacements or stresses are a or more times the smallest of the 

predominant displacement or stress, 

There is a series of problems in this class for which other versions 

of the Kirchhoff-Love theory determine displacements and forces for the 

basic state of stress to an asymptotic error of the order of no. One 



1402 U.K. Nigul 

such case was the problem investigated by brevskii 161. 
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